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a b s t r a c t

The kernel-free support vector machine (SVM) models are recently developed and studied to overcome
some drawbacks induced by the kernel-based SVM models. To further improve the classification
accuracy and computational efficiency of existing kernel-free quadratic surface support vector machine
(QSSVM) models, a novel kernel-free ν-fuzzy reduced QSSVM model is proposed. The proposed model
utilizes a reduced quadratic surface for nonlinear binary classification as well as reducing the effect of
outliers in the data set. Some theoretical properties are rigorously studied, especially, the effects of the
parameter ν on the dual feasibility and the number of support vectors. Computational experiments are
conducted on some public benchmark data sets to indicate the superior performance of the proposed
model over some well-known binary classification models. The numerical results also favors the higher
training efficiency of the proposed model over those of other kernel-free SVM models. Moreover, the
proposed model is successfully applied to the prodromal detection of Alzheimer’s Disease with good
performance, by using the data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Data classification is an essential research direction of machine
earning and has significantly influenced many fields. As one
f the most powerful classification technique, the SVM model
as originally proposed by Cortes and Vapnik [1], and has been
ell developed and applied to many real-world problems [2,3].
or a binary classification task, the ordinary linear SVM model
eparates the two classes of data with a hyperplane, while the
etween-class margin is maximized and the mis-classified data
oints are penalized. By employing kernel functions, the kernel-
ased SVM is able to generate nonlinear separation surfaces for
ertain data sets. The idea is to map the data into a higher
imensional feature space and then classify the mapped data
oints linearly. Scholköpf et al. [4] proposed the ν-SVM, in which
he parameter ν controls the number of support vectors. Even
hough the ν-SVM produces the same classification results as the
ordinary SVM model does under some specific conditions [4–6],
tuning the parameter is more convenient when using ν-SVM as
he parameter ν is bounded [5]. The ν-SVM can also be equipped
ith kernels to handle nonlinear cases [7].

∗ Corresponding author.
E-mail address: mhuang@mail.neu.edu.cn (M. Huang).
ttps://doi.org/10.1016/j.asoc.2022.109390
568-4946/© 2022 Elsevier B.V. All rights reserved.
Recently, the kernel-free SVM models were proposed [8],
which separate the two classes of data by directly utilizing non-
linear surfaces instead of mapping data into high dimensional
feature spaces. No pre-selection of kernels is required and no
kernel parameters needs to be tuned, which saves much com-
putational time and efforts in the training process. As the most
typical kernel-free SVM model, the soft QSSVM (SQSSVM) [9]
directly generates a quadratic separation surface for classification
while maximizing the relative geometric margin between classes
and minimizing the mis-classification errors. Various kernel-free
QSSVM models were proposed in literature afterwards. Bai et al.
[10] proposed a least squares based kernel-free QSSVM and
applied it to disease classification. Tian et al. [11] proposed
a fuzzy QSSVM for reject inference in credit scoring. Mousavi
et al. [12] investigated the sparsity of SQSSVM by adding an ℓ1
regularization to the objective function.

However, kernel-free QSSVM models may have disadvantages
as well. First, the number of variables in SQSSVM increases
exponentially after the equivalent reformulation [9,12,13], which
slows down the training efficiency of SQSSVM. Besides, the best
penalty parameter of the SQSSVM model is relatively large
[9,14], which brings the difficulty when tuning parameters with
the grid method. To overcome these drawbacks, in this paper,
we propose a state-of-the-art fuzzy reduced quadratic surface
support vector machine model for nonlinear binary classification,
which is denoted as (ν-FRQSSVM). Certain theoretical properties

https://doi.org/10.1016/j.asoc.2022.109390
http://www.elsevier.com/locate/asoc
http://www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2022.109390&domain=pdf
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re rigorously studied for the proposed model. Computational
xperiments are also conducted to investigate the classification
ccuracy, the training efficiency and the parameter sensibility of
he proposed model.

The SVM models have been successfully applied to many
eal-life problems, one of which is the disease diagnosis. As an
ssential field of machine learning aided disease diagnosis, the
rodromal detection of the Alzheimer’s Disease (AD) [15–17]
ttracts much attention. Since the cause of AD has not been fully
nderstood by human beings, the clinical diagnosis of AD can only
e made at a very late stage after confirming the clinic hallmarks
f AD [18]. Hence, an early detection of potential AD patients is
elpful for doctors to provide them with early treatments and
ave unnecessary medical costs. The data in disease diagnosis is
ften small-scaled with many features [19], so it can be rela-
ively well-handled by SVM models among the machine learning
ethods. Recently, some kernel-free QSSVM models [10] have
lso been applied to disease diagnosis. However, due to the large
umber of features in the MRI-based AD data sets, the kernel-
ree QSSVM models proposed in literature might not be suitable
or the detection of AD. Some state-of-the-art machine learning
odels [20,21] are also proposed and applied to the AD diagnosis.

n this paper, by using the AD data sets obtained from ADNI
atabase, the proposed model is shown to successfully handle the
rodromal detection of AD.
The main contributions of this paper are summarized as the

ollowing:

1. The proposed (ν-FRQSSVM) model generates the separa-
tion quadratic surface without considering the cross terms
in the quadratic form so that it is much more efficient than
other tested kernel-free QSSVM models in terms of compu-
tational time. In addition, the proposed model is equipped
with fuzzy membership, which is applied to each training
data point and helps reduce the relative contribution of
outliers or noise in generating the optimal separation sur-
face. The employment of the ν-SVM idea further expedite
the training process of the proposed model.

2. The proposed (ν-FRQSSVM) model is theoretically investi-
gated. The dual formulation is derived and the relationship
between its feasibility and the range of parameter ν is rig-
orously shown. We also show how the number of support
vectors is controlled by the value of the parameter ν.

3. To the best of our knowledge, this is the first work of
applying a kernel-free SVM to Alzheimer’s Disease fore-
casting. There are hundreds of features in the data of the
Alzheimer’s Disease forecasting problem, which limits the
applicability of well-known kernel-free QSSVM models but
not impact the applicability of the proposed model. From
the computational results, the good performance of the
proposed model for Alzheimer’s Disease forecasting, indi-
cates the potential of the kernel-free proposed model in
well handling real-world problems where the data has the
large number of features.

The rest of this paper is organized as follows. We first bring
some related research works of SVM models for binary clas-
sification in Section 2. Then the proposed (ν-FRQSSVM) model
is introduced in Section 3. Some theoretical properties are also
analyzed. In Section 4, computational experiments are conducted
on some public benchmark data sets and the AD data from ADNI
database. Section 5 concludes the paper.

2. Preliminaries

Some preliminary knowledge, including a brief review of some
related SVM models for binary classification, is introduced in this
section.
2

2.1. Notations

Some mathematical notations are introduced in this section.
Throughout this paper, we use lower case letters to denote
scalars, bold lower case letters to denote vectors, and bold upper
case letters to denote matrices. The n-dimensional Euclidean
space is denoted by Rn, and its non-negative orthant is denoted
by Rn

+
. Denote the set of n-dimensional symmetric matrices by

n, and denote the set of n-dimensional diagonal matrices by Dn.
or any matrix B ∈ Sn, write B ⪰ 0 if it is positive semi-definite,
nd B ≻ 0 if it is positive definite. For any matrix A ∈ Rm×n,
enote its ith row by a row vector Ai•, and its jth column by a
olumn vector A•j.
For further convenience, we introduce a vectorization tech-

ique for symmetric matrices, which is widely used in the re-
ormulations of kernel-free SVM models [9,14]. For any B ∈ Sn,
efine the half-vectorization of B as the following:

vec(B) ≜[B11, . . . , B1n, B22, . . . , B2n, . . . , Bn−1,n−1, Bn−1,n, Bnn]
T

∈ Rn(n+1)/2. (1)

f B ∈ Dn, define the diag-vectorization as the following:

vec(B) ≜ [B11, B22, . . . , Bn−1,n−1, Bnn]
T

∈ Rn. (2)

In addition, for any vector a = [a1, . . . , an]T ∈ Rn, define the
uadratic vector qvec(a) as

vec(a) ≜
[
1
2
a21,

1
2
a22, . . . ,

1
2
a2n

]T
∈ Rn (3)

and the quadratic vector lvec(a) with cross terms as

lvec(a) ≜
[
1
2
a21, a1a2, . . . , a1an,

1
2
a22, a2a3, . . . , a2an, . . . ,

1
2
a2n

]T
∈ Rn(n+1)/2 (4)

Remark. With the definitions above, it is possible to linearize
the quadratic forms of a symmetric or a diagonal matrix. In order
words, for any x ∈ Rn, B ∈ Sn and D ∈ Dn.

1
2
xTBx = lvec(x)Thvec(B),

1
2
xTDx = qvec(x)Tdvec(D).

Throughout this article, define Q : Sn
× Rn

× R → Rn with

Q(W, b, c) ≜ {x ∈ Rn
|
1
2
xTWx + bTx + c = 0} ⊂ Rn. (5)

Notice that, Q(W, b, c) represents a quadratic surface parame-
erized by tuple (W, b, c) in Rn. When W is a diagonal matrix,
he corresponding quadratic surface is called a reduced quadratic
urface and is denoted as Qd(W, b, c).

We also define the binary data set as the following:

=

{(
x(i), y(i)

)
i=1,...,N

⏐⏐ x(i) ∈ Rn, y(i) ∈ {−1, 1}
}

, (6)

here N is the number of data points. Each data point x(i) =

x(i)1 , . . . , x(i)n ]
T

∈ Rn is a vector of n feature values, and y(i) is the
abel of x(i). We bring the definition of a trivial feature in data set
as the following:

efinition 2.1 (Trivial Feature). Given data D as defined by (6),
he kth feature is trivial if x(1)k = x(2)k = · · · = x(N)

k .

For any binary data set D used throughout this paper, we make
the following assumption without loss of generality:

Assumption 1. All the features of the data set D are non-trivial.
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Intuitively speaking, a feature with unique value does not
contribute to the classification result, and we can always drop it
when preprocessing the data set.

We also define the index sets of the positive and the negative
class as I+ ≜ {i|y(i) = +1} and I− ≜ {i|y(i) = −1}, respectively.
Moreover, denote the cardinalities of I+ and I− by N+ and N−,
espectively. Denote the index set of the smaller class by Imin, i.e.,{
I+, N+ ⩽ N−,

I−, otherwise. (7)

Let Nmin ≜ |Imin| and notice that Nmin = min(N+,N−). Without
loss of generality, we assume Nmin > 0 for this article.

2.2. Related binary classification SVM models

In this subsection, we provide a brief review of some related
SVM models. For a binary classification task, the idea of SVM is
to find a separation hyperplane while maximizing the margin
of separation [1]. When the data is not linearly separable, the
soft-margin is employed by introducing the slack vector ξ =

[ξ1, . . . , ξN ]
T

∈ RN
+
. The soft-margin linear SVM is formulated as

the following:

min
1
2
∥w∥

2
2 + C

N∑
i=1

ξi

s.t. y(i)
(
wTx(i) + b

)
⩾ 1 − ξi ∀i = 1, . . . ,N

w ∈ Rn, b ∈ R, ξ ∈ RN
+
.

(SVM)

where C > 0 is a given parameter. Each ξi is a slack variable that
measures the mis-classification error for each x(i). For those cases
that the linear hyperplanes cannot characterize the nonlinear
structure of the data sets, the kernel-based SVM models were
proposed. The idea is to map the data points into a higher dimen-
sional feature space using via a nonlinear feature map φ : Rn

→
l (l > n), and then separate the mapped data with a hyperplane

in the feature space. The kernel-based SVM is formulated as the
following:

min
1
2
∥v∥2

2 + C
N∑
i=1

ξi

s.t. y(i)
(
vTφ(x(i)) + d

)
⩾ 1 − ξi ∀i = 1, . . . ,N

v ∈ Rl, d ∈ R, ξ ∈ RN
+
.

(KSVM)

where C > 0 is the given parameter. Denote K (x(i), x(j)) =

φ(x(i))Tφ(x(j)) as the kernel function of x(j) and x(j). Various kernel
functions have been proposed in literature, including the fre-
quently used RBF (radial basis function) kernel and the quadratic
(second order polynomial) kernel [12]. Notice that (KSVM) re-
duces to (SVM) when φ(x) = x.

(RBF kernel) K (x(i), x(j)) = exp
(

−∥x(i) − x(j)∥2
2

2γ 2

)
(quadratic kernel) K (x(i), x(j)) =

(
x(i)Tx(j) + r

)2 (8)

Since (KSVM) is a convex quadratic programming (QP) prob-
lem, so it is meaningful to study its dual problem:

min
1
2

N∑
i=1

N∑
j=1

K (x(i), x(j))y(i)y(j)αiαj −

N∑
i=1

αi

s.t.
N∑
i=1

αiy(i) = 0
(DKSVM)
0 ⩽ αi ⩽ C, i = 1, . . . ,N.

3

here C > 0 is a given parameter.
Similar to the SVM models, Schölkopf et al. proposed the

-SVM model for binary classification in [4]. The kernel-based
-SVM model is formulated as the following:

in
1
2
∥v∥2

2 − νρ +
1
N

N∑
i=1

ξi

s.t. y(i)
(
vTφ(x(i)) + d

)
⩾ ρ − ξi ∀i = 1, . . . ,N

v ∈ Rl, d ∈ R, ρ ∈ R+, ξ ∈ RN
+
.

(ν-KSVM)

The only parameter in (ν-KSVM) is ν ∈ [0, 1], which yields
a more efficient process for tuning the parameter. Moreover,
parameter ν provides a more effective control of the number
of support vectors [4]. From the view of optimization, the (ν-
KSVM) is still a convex QP problem and its dual problem can be
formulated as the following:

min
1
2

N∑
i=1

N∑
j=1

K (x(i), x(j))y(i)y(j)αiαj

s.t.
N∑
i=1

αiy(i) = 0

N∑
i=1

αi ⩾ ν

0 ⩽ αi ⩽
1
N

, i = 1, . . . ,N.

(ν-DKSVM)

where ν is the given parameter. Some theoretical properties have
been investigated in [4–6], including the following lemma:

Lemma 2.1. (ν-DKSVM) is feasible if and only if ν ⩽ ν∗, where

ν∗ ≜
2Nmin

N

where Nmin is defined at the beginning of Section 2.2.

Remark. Notice that ν∗ ⩽ 1. The upper bound of ν provided by
Lemma 2.1 is significant in training (ν-DKSVM) as it reduces the
range of ν from [0, 1] to [0, ν∗

]. The proof can be found in [5].

Recently, multiple the kernel-free SVM models have been
proposed and developed for nonlinear classification [8,9,12,14].
Instead of mapping the data points into a higher-dimensional
feature space, the kernel-free SVM models separate the data sets
by directly generating the nonlinear separation surfaces in the
original space. A typical kernel-free SVM model is the following
soft quadratic surface SVM (SQSSVM) model [9], which maxi-
mizes the summation of relative geometrical margins of data
points while penalizing the margin errors:

min
N∑
i=1

∥Wx(i) + b∥2
2 + C

N∑
i=1

ξi

s.t. y(i)
(
1
2
x(i)TWx(i) + x(i)Tb + c

)
⩾ 1 − ξi, i = 1, . . . ,N,

W ∈ Sn, b ∈ Rn, c ∈ R, ξ ∈ RN
+
.

(SQSSVM)

where C is a given parameter. The (SQSSVM) model can be
equivalently reformulated into the following model for easier
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in
1
2
zTGz + C

N∑
i=1

ξi

s.t. y(i)
(
s(i)T z + c

)
⩾ 1 − ξi, i = 1, . . . ,N,

z ∈ Rn(n+1)/2, c ∈ R, ξ ∈ RN
+
.

(SQSSVM′)

where G and s(i)(∀i = 1, . . .N) are defined in [9].
And the dual problem of (SQSSVM′) [9] is formulated as the

following:

min
1
2

N∑
i=1

N∑
j=1

αiαjy(i)y(j)s(i)
TG−1s(i) −

N∑
i=1

αi

s.t.
N∑
i=1

αiy(i) = 0

0 ⩽ αi ⩽ C, i = 1, . . . ,N.

(DSQSSVM′)

In some real-life applications, the data sets may contain noise
r outliers, which may decrease the classification accuracy. To
educe the influence from outliers, Lin and Wang [22] equipped
he SVM model with the fuzzy property. Each data point x(i) is
assigned a fuzzy membership θi ∈ (0, 1] as a weight to represent
its importance for the classification. If x(i) is more like an outlier,
θi will be close to 0, which will reduce its contribution to the
optimal classifier.

Given a data set D as defined by (6), the fuzzy membership θi
of x(i) is defined as the following:

θi =

⎧⎪⎪⎨⎪⎪⎩
1 −

∥x+ − x(i)∥2

r+ + ϵ
i ∈ I+

1 −
∥x− − x(i)∥2

r− + ϵ
i ∈ I−

(9)

where ϵ > 0 is a small perturbation to avoid zero fuzzy member-
ship value. The x+ and x− are the means of the positive and the
negative classes, respectively. Also, r+ and r−, as defined below,
are the radii of the two classes, respectively.

r+ = max
i∈I+

{∥x+ − x(i)∥2}, r− = max
i∈I−

{∥x− − x(i)∥2}. (10)

The linear fuzzy SVM (FSVM) [22] is formulated as the follow-
ing:

min
1
2
∥w∥

2
2 + C

N∑
i=1

θiξi

s.t. y(i)
(
wTx(i) + b

)
⩾ 1 − ξi ∀i = 1, . . . ,N

w ∈ Rn, b ∈ R, ξ ∈ RN
+
.

(FSVM)

where C > 0 is the given parameter and θi ∈ (0, 1] is the fuzzy
membership associated with data point x(i) (∀i = 1, . . . ,N). Based
on the value of θi, we may control the importance of the data
point x(i) in the case since a bigger value of θi yields a relative
important data point x(i) for classification. Moreover, the dual
problem of (FSVM) is formulated as the following:

min
1
2

N∑
i=1

N∑
j=1

x(i)Tx(j)y(i)y(j)αiαj −

N∑
i=1

αi

s.t.
N∑
i=1

αiy(i) = 0

0 ⩽ αi ⩽ θiC, i = 1, . . . ,N.

(DFSVM)

here C is the given parameter. Notice that the FSVM models
an be equipped with kernels for nonlinear classification in a
4

similar way. Various fuzzy-based SVM models were proposed in
literature [11,23], which have been applied to solving different
types of real-life problems.

3. The ν-fuzzy reduced quadratic surface support vector ma-
chine model

In this section, we propose the ν-FRQSSVM model for binary
classification. In Section 3.1, we derive the proposed model from
the SQSSVM model step by step, and Section 3.2 brings the dual
of (ν-FRQSSVM) as well as some theoretical properties of the
proposed model.

3.1. Model derivation

We first introduce the following ν-SQSSVM model:

min
N∑
i=1

∥Wx(i) + b∥2
2 − νρ +

1
N

N∑
i=1

ξi

s.t. y(i)
(
1
2
x(i)TWx(i) + x(i)Tb + c

)
⩾ ρ − ξi, i = 1, . . . ,N,

W ∈ Sn, b ∈ Rn, c ∈ R, ρ ∈ R+, ξ ∈ RN
+
.

(ν-SQSSVM)

where ν is a given parameter. Similarly, (ν-SQSSVM) becomes the
following (ν-SQSSVM′) after the equivalent reformulation used
when formulating (SQSSVM′):

min
1
2
zTGz − νρ +

1
N

N∑
i=1

ξi

s.t. y(i)
(
s(i)T z + c

)
⩾ ρ − ξi, i = 1, . . . ,N,

z ∈ R
n(n+1)

2 +n, c ∈ R, ρ ∈ R+, ξ ∈ RN
+
.

(ν-SQSSVM′)

where ν is the given parameter.
Since variable z in (ν-SQSSVM′) is the vectorization of matrix

variable W in model (ν-SQSSVM), the number of variables associ-
ated with the coefficients of the separation surface is in the order
of O(n2). Consequently, the computational efficiency slows down
quickly as the dimension of the data set increases.

Recall that all the upper triangular elements of W are recorded
in z when formulating (SQSSVM′). The elements on the diagonal
of W are the coefficients of quadratic terms while the rest are the
coefficients of the cross terms. In order to taking the advantage of
the kernel-free QSSVM model while reducing the computational
complexity induced by a large number of features, we only record
the elements on the diagonal of W. In other words, the idea is to
separate the two classes of data by utilizing a reduced quadratic
surface, whose quadratic coefficient matrix is diagonal. To reach
this goal, we formulate the following reduced ν-SQSSVM model:

min
N∑
i=1

∥Σx(i) + b∥2
2 − νρ +

1
N

N∑
i=1

ξi

s.t. y(i)
(
1
2
x(i)TΣx(i) + x(i)Tb + c

)
⩾ ρ − ξi, i = 1, . . . ,N,

Σ ∈ Dn, b ∈ Rn, c ∈ R, ρ ∈ R+, ξ ∈ RN
+
.

(ν-RSQSSVM)

where ν is the given parameter.
(ν-RSQSSVM) can be equivalently reformulated as the fol-

lowing model by using the same technique when formulating
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SQSSVM′). Let v ≜ dvec(Σ), and ∀i = 1, . . . ,N , r (i) ≜ qvec(x(i)).
he reduced ν-SQSSVM′ can be formulated as the following:

in
1
2
vT Ḡv − νρ +

1
N

N∑
i=1

ξi

s.t. y(i)
(
r (i)Tv + c

)
⩾ ρ − ξi, i = 1, . . . ,N,

v ∈ R2n, c ∈ R, ρ ∈ R+, ξ ∈ RN
+
.

(ν-RSQSSVM′)

where ν is the given parameter. Denote the optimal solution to
(ν-RSQSSVM) as (Σ∗, b∗, c∗), the decision function produced by
(ν-RSQSSVM) is

f (x) = sign
(
1
2
x(i)TΣ∗x(i) + x(i)Tb∗

+ c∗

)
(11)

emark. Recall that an orthogonal transformation preserves
he inner product, i.e., the length of vectors and the angles be-
ween vectors. Therefore, the separability of a given data set
, intuitively, does not change after an orthogonal transforma-
ion. In fact, utilizing a quadratic surface (W, b, c) to classify a
ata set D is equivalent to utilizing a reduced quadratic surface
Σ, b̂, c) to classify a data set obtained by applying an orthog-
nal transformation to D. We leave the detailed derivation in
ppendix A.

By assigning the fuzzy membership (9) to each data point x(i),
e propose the following (ν-FRQSSVM) model:

in
N∑
i=1

θi∥Σx(i) + b∥2
2 − νρ +

1
N

N∑
i=1

θiξi

s.t. y(i)
(
1
2
x(i)TΣx(i) + x(i)Tb + c

)
⩾ ρ − ξi, i = 1, . . . ,N,

Σ ∈ Dn, b ∈ Rn, c ∈ R, ρ ∈ R+, ξ ∈ RN
+
.

(ν-FRQSSVM)

where ν is the given parameter. Denote the optimal solution to
(ν-FRQSSVM) as (Σ∗, b∗, c∗), the decision function produced by
(ν-FRQSSVM) is also defined by (11).

Remark. The slack variable ξ (i) measures the error of mis-
classification, and the fuzzy membership θi represents a relative
in-class importance of data x(i). Recall that the fuzzy membership
is embedded in the two terms in the objective function of the
(ν-FRQSSVM) model. Each term θiξ

(i) and θi∥Σx(i) + b∥2
2 can be

regarded as a measure of ξ (i) and ∥Σx(i) + b∥2
2 with a weight θi,

espectively. When x(i) is likely to be an outlier, it is supposed to
be less important for the classification. Hence, its corresponding
weight θi is expected to be small to reduce the effect of ξ (i) and
Σx(i) + b∥2

2 on the separation surface produced by the proposed
model.

By using the same reformulation technique, the proposed (ν-
FRQSSVM) model can be equivalently reformulated as the follow-
ing:

min
1
2
vT Ĝv − νρ +

1
N

N∑
i=1

θiξi

s.t. y(i)
(
r (i)Tv + c

)
⩾ ρ − ξi, i = 1, . . . ,N,

v ∈ R2n, c ∈ R, ρ ∈ R+, ξ ∈ RN
+
.

(ν-FRQSSVM′)

where ν is the given parameter. The calculation of matrix Ĝ can
e find in Appendix A.
5

3.2. The dual and some theoretical properties of ν-FRQSSVM

emma 3.1 (Positive Definiteness of Matrix Ĝ). Given any data set
s defined in (6), the matrix Ĝ ≻ 0 under Assumption 1.

The proof can be found in Appendix C.
Notice that (ν-FRQSSVM′) is a convex QP problem, and the

agrangian function is

(z, c, ρ, ξ, α, β, γ) =
1
2
zT Ĝz − νρ +

1
N

N∑
i=1

θiξi

+

N∑
i=1

αi
[
ρ − ξi − y(i)

(
zT r (i) + c

)]
− βρ −

N∑
i=1

γiξi

(12)

Take the partial derivative of L on each variable and we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂L
∂z

= Ĝz −

N∑
i=1

αiy(i)r (i)

∂L
∂c

= −

N∑
i=1

αiy(i)

∂L
∂ρ

= −ν +

N∑
i=1

αi − β

∂L
∂ξi

=
θi

N
− αi − γi, ∀i = 1, . . . ,N.

(13)

Let the partial derivatives be zeros and plug back into (ν-
FRQSSVM′), the dual problem is obtained as the following:

min
1
2

N∑
i=1

N∑
j=1

αiαjy(i)y(j)s(i)
T Ĝ

−1
s(i)

s.t.
N∑
i=1

αiy(i) = 0

N∑
i=1

αi ⩾ ν

0 ⩽ αi ⩽
θi

N
, ∀i = 1, . . . ,N.

(ν-DFRQSSVM′)

The KKT condition is listed below.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z = Ĝ
−1

N∑
i=1

αiy(i)r (i),
N∑
i=1

αiy(i) = 0,

N∑
i=1

αi = β + ν, βρ = 0, ρ ⩾ 0, β ⩾ 0,

y(i)
(
zT r (i) + c

)
⩾ ρ − ξi, ∀i = 1, . . . ,N,

αi
(
ρ − ξi − y(i)

(
zT r (i) + c

))
= 0, ∀i = 1, . . . ,N,

0 ⩽ αi ⩽
θi

N
, ∀i = 1, . . . ,N.

(14)

where (z, b, c, ρ, ξ) is the primal optimal solution, α is the dual
optimal solution, and β is the corresponding Lagrangian multi-
plier of ρ.

The following theorem provides a sufficient and necessary
condition for the feasibility of the dual problem (ν-DFRQSSVM′).
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heorem 3.2 (Feasibility of (ν-DFRQSSVM′)). (ν-DFRQSSVM′) is
feasible if and only if ν ∈ [0, νmax], where

νmax ≜
2
∑

i∈Imin
θi

N
. (15)

Here θi is the fuzzy membership associated with data point x(i).

roof. First, we assume that the (ν-DFRQSSVM′) model is feasi-
le. Without loss of generality, let N+ ⩽ N− so that Imin = I+. For
ny dual feasible solution α ∈ RN , we have

⩽

N∑
i=1

αi =

∑
i∈I+

αi +
∑
j∈I−

αj.

Since
∑N

i=1 y
(i)αi = 0 yields

∑
i∈I+ αi =

∑
j∈I− αj and αi ⩽ θi/N ,

the inequality chain above becomes

ν ⩽ 2
∑
i∈I+

αi ⩽ 2

∑
i∈I+ θi

N
= νmax.

Thus, the sufficiency is proved. Next, we show the necessarity.
Assume that ν ∈ [0, νmax], let α ∈ RN such that

αi =

⎧⎪⎪⎨⎪⎪⎩
νθi

2
∑

j∈I+ θj
i ∈ I+,

νθi

2
∑

j∈I− θj
i ∈ I−.

(16)

otice that αi is non-negative. Besides, α satisfies the following
constraints:

αi ⩽
νmaxθi

2
∑

j∈Imin
θj

=
2θi
∑

j∈Imin
θj

2N
∑

j∈Imin
θj

=
θi

N
, i = 1, . . . ,N. (17)

N∑
i=1

αi =

∑
i∈I+

αi +
∑
i∈I−

αi =
ν
∑

i∈I+ θi

2
∑

j∈I+ θj
+

ν
∑

i∈I− θi

2
∑

j∈I− θj
=

ν

2
+

ν

2
= ν.

(18)

Similarly,
∑N

i=1 y
(i)αi =

∑
i∈I+ αi −

∑
j∈I− αj =

ν
2 −

ν
2 = 0 is

lso satisfied. Hence, α is a feasible solution to the dual problem,
hich yields the necessarity.
In conclusion, the theorem is proved. □

Theorem 3.2 provides a relatively tight upper bound for the
arameter ν in the proposed model. Since (ν-FRQSSVM′) is a

convex QP problem with only affine constraints, the strong du-
ality holds [24]. Moreover, the dual problem is bounded for any
ν ∈ [0, νmax]. Therefore, νmax guarantees an achievable primal
optimal solution, which yields the decision function as define by
(11).

The relationship between the parameter ν and the dual opti-
mal solution is shown in the following:

Corollary 3.2.1. Given ν ∈ [0, νmax], the following properties hold:

1. There exists an optimal solution to (ν-DFRQSSVM′) such that∑N
i=1 αi = ν.

2. For any optimal solution to (ν-DFRQSSVM′) such that
∑N

i=1
αi > ν, its corresponding primal optimal solution yields ρ =

0.
3. If (ν-FRQSSVM′) has an optimal solution such that ρ > 0,

then Nν is the lower bound of the number of support vectors.

Proof. We show the first property by contradiction. Assume that
for any optimal solution α∗

= [α∗

1, . . . , α
∗

N ]
T ,
∑N

i=1 α∗

i > ν. Then
define ᾱ such that

ᾱ = γα∗.
 m

6

where γ =
ν∑N

i=1 α∗
i

∈ (0, 1) and denote the optimal value as d∗.

ence, the following inequality chain is obtained

∗
=

1
2

N∑
i=1

N∑
j=1

α∗

i α
∗

j y
(i)y(j)s(i)T Ĝ

−1
s(i)

⩽
1
2

N∑
i=1

N∑
j=1

ᾱiᾱjy(i)y(j)s(i)
T Ĝ

−1
s(i)

=
1
2

N∑
i=1

N∑
j=1

γ 2α∗

i α
∗

j y
(i)y(j)s(i)T Ĝ

−1
s(i) = γ 2d∗ < d∗,

(19)

which yields a contradiction. Hence, there exists at least one
optimal solution such that

∑N
i=1 αi = ν.

Next, we show the second property. Recall the KKT condition
discussed in (14), and we have β > 0 since

∑N
i=1 αi > ν. Thus,

ρ = 0.
For the third one, recall the KKT condition in (14). A positive ρ

yields a zero multiplier β so that the equality
∑N

i=1 αi = ν holds.
Let A ≜ {αi > 0|i = 1, . . . ,N} be the set of support vectors and
notice that αi ⩽ θi/N ⩽ 1/N for all i = 1, . . . ,N . Hence,

|A|

N
⩾

N∑
i=1

αi

θi
⩾

N∑
i=1

αi = ν.

hich yields |A| ⩾ Nν.
In conclusion, the corollary is proved. □

. Computational experiments

In this section, some computational experiments are con-
ucted to investigate the effectiveness and efficiency of the pro-
osed (ν-FRQSSVM) model. We first introduce the settings of
he experiments and then test the proposed model along with
ome well-known binary classification models on some public
enchmark data sets.

.1. Experiment settings

The proposed model is implemented along with some bench-
ark models for comparison, including some well-developed
VM models such as the SVMs with the RBF kernel and the
uadratic kernel, the ν-SVM models with the RBF kernel and
uadratic kernel. Two kernel-free SVM models are also imple-
ented, including the SQSSVM model [9], the quadratic least
quares SVM model [10] and the fuzzy QSSVM model [11]. More-
ver, two state-of-the-art network-based models are also imple-
ented for comparison, including the intuitionistic fuzzy random
ector functional link network [20] and the stochastic configura-
ion network [25]. In addition, other typical methods for binary
lassification are tested for comparison, including the logistic
egression model, the decision tree model, the Gaussian naive
ayes model and the artificial neural network model. The ab-
reviation of each tested model is listed in Table 1 below. We
lso listed the commercial solvers or packages that are utilized
o implement some of the models. Notice that, the (ν-FRQSSVM′)
s implemented for (ν-FRQSSVM) by utilizing the Cplex solver.

All the computational experiments are conducted on a com-
uter with twelve Intel(R) Core(TM) i7-9750H CPU @ 2.60 GHz
PUs and 16 GB RAM. A ten-fold cross validation procedure is
pplied for each experiment. And to make the results statis-
ically meaningful, each experiment is repeated ten times for
ach tested model. The mean and the standard deviation of ac-
uracy scores are recorded to qualify the effectiveness of each

odel. In addition, the CPU time consumed by each model is also
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Table 1
Abbreviations and solvers of tested models.
Model Abbreviation Solver/Package Parameters

Logistic regression LR Scikit-learn –
Decision tree DT Scikit-learn –
Artificial neural network ANN Scikit-learn –
Gaussian naive Bayes GNB Scikit-learn –
Stochastic configuration network SCN – (Lmax, Tmax)
Intuitionistic fuzzy random vector functional link network IFRVFL – (C, µ,N)
SVM with RBF kernel SVM-rbf LIBSVM (C, γ )
SVM with quadratic kernel SVM-quad LIBSVM (C, r)
ν-SVM with RBF kernel ν-SVM-rbf LIBSVM (ν, γ )
ν-SVM with quadratic kernel ν-SVM-quad LIBSVM (ν, r)
Soft margin quadratic surface SVM SQSSVM Cplex C
Quadratic least squares SVM QLSSVM – C
Fuzzy quadratic surface SVM FQSSVM Cplex C
The proposed model ν-FRQSSVM Cplex ν
Fig. 1. (ν-FRQSSVM) vs. SQSSVM on artificial data sets with/without outliers.
w
p
r
s

recorded. It is the time when implementing a model once with
fixed parameters.

The parameters for each tested model are tuned by using grid
method, which is a common approach in literature [9,14]. The
range of each parameter is listed in Appendix D.

We first use two artificial data sets to show the effects that
the fuzzy membership brings to the proposed model. Both the
(ν-FRQSSVM) model and the SQSSVM model are conducted on
the 2-D artificial data sets as plotted in Figs. 1(a)–1(d). Fig. 1(b)
shares the same data pattern as that in Figs. 1(a), and 1(d) shares
the same data pattern as that in Fig. 1(c). But, both Figs. 1(b) and
1(d) have outliers.

From the classification results plotted in Figs. 1(a) and 1(c), we
see that both the SQSSVM model and the proposed (ν-FRQSSVM)
odel perfectly separate the artificial data sets, respectively.
owever, for the data sets with outliers as shown in 1(b) and
(d), the (ν-FRQSSVM) model is still able to characterize a proper
eparation surface, while the SQSSVM is not able to. It shows
7

the robustness of the proposed (ν-FRQSSVM) model despite the
existence of outliers.

Next, we plot the following figures to show the sensibility of
parameter ν on a few commonly used benchmark data sets.

Fig. 2 verifies that the parameter ν is bounded by 0 and νmax,
hich is related to the weights θi’s. In Fig. 2(f), we have also
lotted the boxplot for each result shown in Figs. 2(a) to 2(e),
espectively. The boxplot of each data set is flat, i.e., the accuracy
cores obtained with different values of ν are tightly distributed.
Hence, we may conclude that the classification accuracy of the
proposed model is not very sensitive to the value of its parameter
ν ∈ [0, νmax].

4.2. Tested on public benchmark data

The proposed (ν-FRQSSVM) model is tested with some public
benchmark data sets, whose basic information is listed in Table 2.

We have the following observations from the results listed in
Tables 3 and 4:
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u

Fig. 2. Accuracy scores vs. ν.
Table 2
Public benchmark data sets.
Data set n Sample size (N1 vs. N2) Data set n Sample size (N1 vs. N2)

Blood transfusion 4 178 vs. 570 Glass 9 51 vs. 163
AD clinic 5 383 vs. 846 Wine 13 59 vs. 71
Cryotherapy 6 48 vs. 42 Heart 13 120 vs. 150
Liver disorders 6 185 vs. 134 AUScredit 14 383 vs. 307
Ecoli 7 143 vs. 193 JAPcredit 15 296 vs. 357
Wholesale 7 142 vs. 298 GCDcredit 24 300 vs. 700
Pima 8 268 vs. 500 Loan 44 1000 vs. 1000
Disease basic 9 37 vs. 127 Sonar 60 97 vs. 110
D
a

s
t
m

t
τ

d

t

• Compared with other tested models, the proposed
(ν-FRQSSVM) model provides the highest mean accuracy
scores on all the tested data sets. For the health-care related
data sets such as the AD clinic, Cryotherapy, Liver-disorders,
Disease basic and Heart, the proposed model dominates in
terms of accuracy. In other words, it may have the potential
in solving binary classification problems in health-care.

• The CPU time consumed by the proposed (ν-FRQSSVM)
model is shorter than those by the SQSSVM and the FQSSVM
models. Indeed, the proposed model has a smaller number
of variables than SQSSVM or FQSSVM does, which leads to
a much less worst case computational complexity order.
Moreover, even though (ν-FRQSSVM) consumes a bit longer
CPU time than the least squares based QLSSVM model does
on those small-scaled data sets, it becomes more efficient
than QLSSVM when the number of features and data points
increases.

• Notice that, except the kernel-free QSSVM models, the SCN
model and the IFRVFL model, all the other tested models
are conducted by utilizing Scikit-learn [26] and LIBSVM [27]
packages, which are professionally supported. Even though
the proposed model consumes a longer CPU time, it is still
acceptable.

Moreover, some statistical tests [20,28] are conducted to eval-
ate the all the tested models on the public benchmark data sets.
 i

8

enote the number of models as p and the number of data sets
s m.
First, the average ranks of all the models are calculated in

Table 5. Denote the average rank of ith model as rj. The results
how that the classification accuracy of the proposed model is
he highest with respect to the average rank among all the tested
odels.
In addition, we conduct the Friedman tests [28] to assess all

he tested models. Recall that the Friedman statistic follows the
χ2 distribution (when p and m are not small value) with a p− 1
egrees of freedom, where τχ2 =

12m
p(p+1)

∑p
i=1

(
ri − p+1

2

)2
. Also,

define τF =
(m−1)τ

χ2

m(p−1)−τ
χ2

, where τF follows an F-distribution with
degrees of freedom p − 1 and (p − 1)(m − 1). With the results in
Table 5, we have τχ2 = 83.957 and τF = 10.153 for m = 16 and
p = 14. The F-distribution table at the 95% level of significance is
1.771, which is smaller than τF = 10.153. Hence, it is confident
to reject the null hypothesis. In other words, there is a significant
difference among all the tested models.

In order to check the significant difference, the Nemenyi post-
hoc test is also conducted. Recall that the critical difference is
defined by CD = qα

√
p(p+1)
6m , where qα is the critical value of

he Tukey distribution [28]. Two models are significantly different
f the difference of their average ranks is greater than CD. In
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Table 3
The results of tested models on Benchmark data.

Data set Model

Accuracy score %

LR DT ANN GNB SCN IFRVFL SVM-rbf SVM-quad ν-SVM-rbf ν-SVM-quad SQSSVM QLSSVM FQSSVM ν-FRQSSVM

mean std mean std mean std mean std mean std mean std mean std mean std mean std mean std mean std mean std mean std mean std

Blood transfusion 77.53 1.73 72.30 2.61 79.79 2.66 75.36 3.17 79.54 2.44 76.30 2.66 78.63 1.77 77.05 0.99 78.90 2.02 76.94 0.75 77.91 1.22 79.03 1.86 77.88 1.10 79.84 2.32
AD clinic 76.57 2.98 75.10 2.59 76.08 2.30 71.63 2.98 75.78 3.01 73.92 2.41 75.72 2.31 75.13 2.04 76.05 2.38 71.93 2.51 76.67 1.93 76.15 2.10 76.69 1.94 76.92 1.81
Cryotherapy 86.59 5.76 89.41 6.58 85.88 9.45 84.94 5.54 87.76 6.43 84.24 7.00 88.00 6.46 82.12 8.05 88.00 5.75 88.94 7.07 91.29 5.91 92.24 5.19 90.35 6.33 95.06 4.71
Liver disorders 68.25 4.91 64.13 5.69 65.81 5.99 56.57 7.68 71.94 4.70 70.79 1.62 70.29 5.23 69.97 5.70 70.48 4.94 69.40 6.44 73.59 3.88 73.78 4.42 73.14 4.12 75.68 4.39
Ecoli 96.72 2.30 92.42 2.59 94.36 2.89 60.68 10.51 96.55 2.08 92.00 6.59 96.67 1.96 95.76 2.40 96.85 1.95 96.30 1.86 97.27 1.69 97.50 1.54 97.09 1.69 97.58 1.42
Wholesale 91.03 2.78 88.18 3.78 87.22 3.90 89.79 3.17 89.89 3.05 90.11 2.76 90.62 2.54 90.80 2.72 90.57 2.32 87.45 2.79 92.37 2.37 90.94 3.71 92.14 2.24 92.74 2.25
Pima 77.36 3.63 70.69 3.15 73.52 4.07 75.53 3.28 76.26 3.56 74.51 3.09 77.05 3.50 75.90 3.51 76.63 3.45 76.58 3.19 77.36 3.09 77.52 3.14 77.39 3.21 78.22 3.53
Disease basic 92.50 4.86 85.88 4.95 90.50 5.14 87.75 6.31 88.25 4.53 84.38 5.23 89.88 4.26 89.25 3.73 90.13 4.75 88.00 3.57 92.00 3.73 91.88 4.13 91.88 4.03 95.75 2.84
Glass 93.43 3.66 94.19 3.83 93.62 3.42 90.76 2.96 91.33 3.49 87.90 3.86 94.00 2.84 92.48 3.48 93.71 3.50 92.76 3.98 94.29 3.07 93.33 3.63 94.67 2.41 95.62 2.63
Wine 97.92 3.08 96.80 3.83 98.24 2.60 98.08 3.02 98.40 2.26 94.56 5.52 99.04 1.74 97.12 2.95 98.88 2.95 96.96 3.32 99.36 1.50 99.20 1.60 99.20 1.63 100.00 0.00
Heart 82.96 5.01 74.96 4.99 75.85 5.94 84.00 5.23 83.56 5.03 82.22 5.12 83.19 5.26 78.89 5.45 82.30 5.60 81.33 4.90 82.00 3.80 81.41 3.37 81.48 3.59 86.37 4.80
AUScredit 86.13 2.99 81.75 2.78 80.53 3.03 80.32 3.40 85.64 2.95 85.66 3.57 85.99 2.75 82.98 2.65 86.25 2.88 84.26 3.12 86.86 2.84 87.12 2.78 86.66 2.46 87.94 3.04
JAPcredit 86.34 3.29 81.81 3.52 81.17 3.55 80.80 3.03 86.34 3.21 85.66 3.92 85.88 3.55 84.68 3.26 85.94 3.28 85.82 3.50 87.11 3.43 87.32 3.25 87.14 3.22 87.75 2.71
GCDcredit 76.70 2.48 68.16 2.70 69.20 3.54 72.42 3.54 72.76 2.13 70.76 2.59 75.84 2.11 75.08 2.71 76.34 2.27 74.66 2.94 75.62 2.18 76.42 2.17 75.68 2.21 77.60 2.25
Loan 65.74 1.52 55.71 2.08 58.94 2.69 60.93 5.14 60.81 2.61 64.81 1.97 65.48 1.36 62.05 2.53 65.58 1.75 61.64 3.75 64.18 1.69 64.43 1.98 64.19 1.67 66.65 1.52
Sonar 76.29 4.20 74.05 6.86 84.98 5.25 67.90 4.91 72.78 6.85 78.54 6.01 86.63 4.88 82.54 7.17 85.95 4.94 83.90 7.55 77.46 4.74 79.22 5.35 79.02 5.09 86.83 4.88

9
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Table 4
The CPU time of tested models on Benchmark data.
Data set Model

CPU time (s)

LR DT ANN GNB SCN IFRVFL SVM-rbf SVM-quad ν-SVM-rbf ν-SVM-quad SQSSVM QLSSVM FQSSVM ν-FRQSSVM

Blood Transfusion 0.006 0.003 1.380 0.004 0.244 0.156 0.014 0.003 0.007 0.003 0.223 0.029 0.467 0.129
AD clinic 0.013 0.005 2.435 0.004 0.220 0.872 0.015 0.017 0.017 0.009 0.582 0.046 0.505 0.398
Cryotherapy 0.005 0.002 0.154 0.005 0.128 0.031 <0.001 <0.001 <0.001 <0.001 0.037 0.007 0.074 0.023
Liver Disorders 0.005 0.003 1.397 0.004 0.169 0.101 0.002 0.004 0.002 0.001 0.093 0.016 0.188 0.057
Ecoli 0.008 0.002 0.500 0.004 0.145 0.048 0.001 0.001 0.001 0.001 0.108 0.056 0.230 0.064
Wholesale 0.006 0.003 1.134 0.005 0.187 0.081 0.001 0.001 0.001 0.001 0.140 0.038 0.299 0.084
Pima 0.006 0.006 2.698 0.003 0.187 0.174 0.007 0.019 0.007 0.006 0.323 0.053 0.668 0.166
Disease basic 0.011 0.003 0.121 0.003 0.121 0.044 <0.001 <0.001 <0.001 <0.001 0.095 0.022 0.103 0.050
Glass 0.010 0.003 0.103 0.003 0.129 0.061 <0.001 <0.001 <0.001 0.001 0.107 0.023 0.223 0.048
Wine 0.006 0.003 0.082 0.004 0.125 0.036 <0.001 <0.001 <0.001 0.001 0.220 0.025 0.431 0.037
Heart 0.005 0.003 0.159 0.003 0.136 0.086 0.001 0.001 0.001 0.001 0.286 0.047 0.587 0.064
AUScredit 0.007 0.005 0.806 0.004 0.174 0.124 0.007 0.026 0.008 0.008 0.679 0.151 1.345 0.188
JAPcredit 0.011 0.005 0.714 0.004 0.142 0.209 0.006 0.015 0.007 0.005 0.741 0.147 1.507 0.177
GCDcredit 0.009 0.009 0.628 0.004 0.143 0.601 0.021 0.019 0.024 0.020 3.447 0.676 3.557 0.451
Loan 0.034 0.041 2.161 0.006 0.211 2.686 0.132 0.175 0.153 0.206 39.381 17.822 43.742 2.078
Sonar 0.009 0.007 0.296 0.005 0.120 0.191 0.002 0.002 0.002 0.002 40.423 9.994 80.740 0.174
d
t
i

Table 5
Average rank of all the tested models on public benchmark data sets.
Model Average rank Model Average rank

LR 11.063 SVM-quad 6.500
DT 10.688 ν-SVM-rbf 8.313
ANN 10.438 ν-SVM-quad 7.875
GNB 9.500 SQSSVM 6.188
SCN 7.625 QLSSVM 4.438
IFRVFL 7.625 FSQSSVM 6.438
SVM-rbf 7.313 ν-FRQSSVM 1.000

our case, q.05 = 3.354 and CD = 4.961. Hence, the Nemenyi
est detects the significant differences between the proposed
-FRQSSVM model and all the other tested models except the
LSSVM model. Nevertheless, it is not hard to notice that the
verage rank of the proposed model is much better than that of
he QLSSVM model.

emark. With the results in Tables 3 and 4, and the results
rom the statistical tests, we are confident to conclude that the
roposed ν-FRQSSVM model is strongly competitive among all
he tested models. It is meaningful to apply the proposed model
o real-life applications.

.3. Application to the prodromal detection of Alzheimer’s disease

In this section, the proposed (ν-FRQSSVM) model is applied
o the prodromal detection of AD. First, we briefly introduce the
ackground of AD and the data set.

.3.1. Background and data
AD is a type of brain disorder which progressively destroys

atients’ memories, thinking skills and, eventually, the ability
o carry out some simplest tasks in daily life. Named after Dr.
lois Alzheimer, who identified this unusual disease of the cere-
ral cortex in 1906, AD have been attracting much attention
rom governments and medical researchers [29]. However, the
auses of this common dementia is still not fully understand by
uman beings. In fact, a definite diagnosis, most of times, can
nly be made after confirming the hallmarks of AD, such as the
eurofibrillary tangles or amyloid plaques.
Mild cognitive impairment (MCI) is a prodromal stage of AD.

t has been studied that MCI tends to progress to AD at a rate of
pproximately 10%–15% each year [30]. Hence, an accurate deter-
ination of specific markers of early AD progression is crucial in
reventing AD from worsening [31]. It not only aids the doctors
o develop proper treatments for potential patients, but also save
he cost and time of clinical trials.

Recently, machine learning methods have been proposed to

utomatically classify patients with AD, MCI and the control
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Table 6
The accuracy score results of tested models on AD data.

Model Classes

Accuracy score %

CN vs. AD CN vs. MCI AD vs. MCI

Mean Std Mean Std Mean Std

LR 87.46 3.73 73.36 2.52 65.41 3.17
DT 77.95 4.64 73.78 3.04 64.65 4.10
ANN 88.10 3.24 74.05 2.35 66.03 3.47
GNB 81.41 4.73 68.72 2.85 67.14 3.90
SCN 77.22 4.84 70.42 3.00 63.79 3.31
IFRVFL 85.90 3.59 73.41 3.92 64.62 11.48
SVM-rbf 89.51 2.86 77.28 3.01 68.93 3.70
SVM-quad 88.63 2.63 76.96 2.69 70.34 3.75
ν-SVM-rbf 89.61 3.01 77.16 2.61 70.86 3.41
ν-SVM-quad 89.07 2.74 77.16 2.43 70.69 3.24
ν-FRQSSVM 91.17 2.51 77.63 2.21 70.90 2.96

subjects (CN) based on volumetric measurements of regions of
interest (ROI) [15,20,21]. In this subsection, the proposed (ν-
FRQSSVM) model is extended and applied to AD forecasting, as
well as all other tested models. The AD data set utilized in this
study is obtained from the ADNI database, which is a project
launched at the beginning of this millennium for investigating
the progression of AD. The data set contains a total of 816 data
points, including 228 for the CN class, 189 for the AD class, and
399 for the MCI class. The data set has 331 features, including
the age, marriage status, gender, education level and 327 ROI-
based features. To avoid the dominance of some input features
with larger numerical values over those with smaller values, all
the data points are normalized into [0,1].

4.3.2. Numerical experiments on the AD data set
The proposed (ν-FRQSSVM) model has been applied to the AD

ata set as well as all the other tested models except SQSSVM due
o the computer memory issue. Indeed, the number of features
s n = 331 which yields n(n + 1)/2 = 54 946 variables in the
SQSSVM model, which not amenable for the computer we used
throughout the computational experiments. However, the pro-
posed (ν-FRQSSVM) model does not encounter the computational
issue. All the results are listed in the following Tables. In Ap-
pendix E, we also plotted the ROC curves for all the tested models
on the AD data set to show the performance with different
training rates (see Tables 8 and 9).

The boxplots of the results are shown below (see Fig. 3):
We have the following observations from the results listed

above:

• From the mean accuracy scores listed in Table 6, it might
be easier to detect an AD patient from the control subjects
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Fig. 3. Boxplots of AD data results.
Table 7
The AUC results of tested models on AD data.

Model Classes

AUC %

CN vs. AD CN vs. MCI AD vs. MCI

Mean Std Mean Std Mean Std

LR 87.31 3.81 67.14 3.70 61.47 4.72
DT 77.97 4.66 66.98 3.72 56.90 5.16
ANN 87.61 3.55 67.87 3.82 62.27 4.34
GNB 81.31 4.87 70.98 3.04 64.92 5.56
SCN 75.07 5.91 60.24 4.55 57.17 6.20
IFRVFL 85.26 3.53 73.54 3.53 65.16 3.77
SVM-rbf 86.63 3.30 68.16 3.44 60.79 2.53
SVM-quad 86.91 3.37 67.31 3.47 57.20 3.58
ν-SVM-rbf 89.07 2.97 69.74 3.42 60.50 2.76
ν-SVM-quad 88.98 2.80 69.14 4.88 57.93 2.89
ν-FRQSSVM 90.95 2.69 71.54 3.24 65.94 4.28

than to detect a MCI patient from the control subjects. But it
is relatively difficult for any of the tested models to separate
the AD and the MCI patients.

• The proposed (ν-FRQSSVM) outperforms all the other tested
models in terms of classification accuracy. Notice that, for
11
Table 8
The F1-score results of tested models on AD data.

Model Classes

F1-score %

CN vs. AD CN vs. MCI AD vs. MCI

Mean Std Mean Std Mean Std

LR 87.15 4.18 66.90 3.01 60.70 3.80
DT 77.30 4.50 66.46 2.99 59.58 4.58
ANN 88.97 3.22 70.09 3.49 62.19 3.62
GNB 81.23 4.79 66.40 2.77 64.96 3.99
SCN 74.78 5.40 60.91 4.42 56.77 4.81
IFRVFL 85.05 4.54 70.84 4.14 62.48 3.99
SVM-rbf 88.61 3.57 69.87 2.90 63.17 4.23
SVM-quad 72.08 5.54 58.01 3.49 55.50 4.34
ν-SVM-rbf 88.26 3.56 70.80 2.75 63.32 4.71
ν-SVM-quad 79.38 6.12 63.13 3.49 59.20 4.40
ν-FRQSSVM 90.26 3.17 71.26 2.89 65.91 4.04

the binary classification of between CN and AD, only the
mean accuracy score provided by (ν-FRQSSVM) exceeds 90%.
Moreover, the standard deviation of accuracy scores pro-
vided by the proposed model is smallest among those of
tested models. All in all, the (ν-FRQSSVM) model provides
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Table 9
The CPU time of tested models on AD data.

Model Classes

CPU time (s)

CN vs. AD CN vs. MCI AD vs. MCI

LR 0.021 0.022 0.022
DT 0.162 0.168 0.166
ANN 4.993 7.412 6.337
GNB 0.007 0.009 0.008
SCN 0.126 0.170 0.172
IFRVFL 2.708 2.582 2.435
SVM-rbf 0.139 0.138 0.141
SVM-quad 0.122 0.141 0.125
ν-SVM-rbf 0.144 0.149 0.148
ν-SVM-quad 0.135 0.140 0.138
ν-FRQSSVM 3.417 3.471 3.517

the most accurate and the most stable classifier among all
tested models, for the prodromal detection of AD.

• As shown in Table 7, the mean AUC of the proposed model
is the highest among those of all the other tested models. In
addition, the standard deviations yielded by (ν-FRQSSVM)
are the smallest when classifying the AD patients and the
MCI patients against the control subjects. It favors the good
classification ability of the proposed model in the prodromal
detection of AD.

• Notice that, the typical kernel-free QSSVM models (e.g.,
SQSSVM, QLSSVM or FQSSVM) are not able to handle the
AD data set under the computational environment in this
paper, due to the large number of features. However, the
proposed model is able to handle this problem, and outper-
forms all other tested models in terms of accuracy. The CPU
time consumed by the proposed model is acceptable, even
though it is longer than some of the tested models which are
conducted by using commonly-used solvers. Indeed, taking
the advantage of utilizing the reduced quadratic surface for
separation, the proposed (ν-FRQSSVM) may handle the real-
life problems more efficiently than other kernel-free QSSVM
models.

We notice that for the binary classification of CN vs. AD, the
ean accuracy score of (ν-FRQSSVM) even exceeds 90%, and the
tandard deviation is also the smallest. For the prodromal detec-
ion of AD, i.e., CN vs. MCI, the proposed (ν-FRQSSVM) model is
till the most accurate one among all tested models. In addition,
he CPU time consumed by the proposed model is acceptable,
ven though it is longer than those models which are conducted
y using packages. Notice that the typical kernel-free SQSSVM
odel is even not able to handle such a large number of features

n the AD data set. In general, the classification accuracy listed in
able 6 has verified that the proposed (ν-FRQSSVM) model may
e preferable in machine learning based AD diagnosis.

. Conclusion

In this paper, we have proposed a state-of-the-art kernel-free
ν-FRQSSVM) model for nonlinear binary classification. Certain
heoretical properties of (ν-FRQSSVM) have been rigorously stud-
ed. Moreover, the classification effectiveness and efficiency of the
roposed model have been investigated by conducting numerical
xperiments on some public benchmark data sets. In addition, the
roposed model has been applied to AD disease diagnosis with a
OI-based MRI data set from ADNI database. The major findings
f this paper are summarized below:
12
• The proposed (ν-FRQSSVM) performs better than all other
tested well-known models in terms of the classification ac-
curacy. Different from the nonlinear SVM models equipped
with kernels, the proposed (ν-FRQSSVM) model neither re-
quires any kernels nor tuning the kernel parameters, which
saves considerable efforts in practice.

• By adopting the idea of ν-SVM, the value of parameter ν in
the proposed model is bounded. Therefore, for a given data
set, the exact range of parameter ν not only saves efforts, but
also yield a better parameter ν while using the grid tuning
method. By assigning the fuzzy membership to each data
point, the proposed (ν-FRQSSVM) model is able to reduce
the influence from outliers in the given data set. The fuzzy
membership is easy to calculate and it does not affect the
convexity of the model.

• The results from the numerical experiments have shown
the dominant performance of the proposed (ν-FRQSSVM)
model on the tested benchmark data sets. By generating
the quadratic surface without considering the cross terms
in the quadratic form, the proposed (ν-FRQSSVM) model
consumed much less CPU time than the SQSSVM model did.
All these results has indicated the potential of the proposed
(ν-FRQSSVM) model in handling other real-life applications
of binary classification.

• In particular, the proposed model has shown its promising
effectiveness and its acceptable efficiency after being ap-
plied to the AD data set. The satisfying performance of the
proposed model in the prodromal detection of AD has pro-
vided another reliable machine learning tool in the research
field of AD forecasting.

uture study
Our investigation of the (ν-FRQSSVM) model leads to some

otential research works. First, the reduced quadratic surface
dopts only diagonal elements of the matrix in the quadratic
erm. Similar idea can be employed by other quadratic surface
VM models [32]. Besides, the fuzzy membership function can
e customized based on different real-life applications, such as
he transportation forecasting [33], credit scoring [34]. Another
nteresting work is to extend the proposed model to image clas-
ification [35,36], which involves matrix data inputs. Moreover,
e plan to design an efficient algorithm for the proposed model.
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ppendix A. Motivation of the proposed (ν-FRQSSVM) model

In this section, we derive the idea of keeping the diagonal
lements of the quadratic term of the separation function. As-
ume the given data set defined by (6) is quadratically separable,
.e., there exists a quadratic surface Q ≜ {x ∈ Rn

|
1
2x

TWx + bTx +

= 0} such that⎧⎪⎨⎪⎩
1
2
x(i)TWx(i) + bTx(i) + c > 0, if y(i) = 1,

1
2
x(i)TWx(i) + bTx(i) + c < 0, if y(i) = −1.

(20)

here matrix W is symmetric. Recall that for any symmetric
matrix W, the singular value decomposition (SVD) of W tells that
here exists an orthonormal matrix U such that

= UTΣU, (21)

here Σ = diag(σ1, σ2, . . . , σn) is a diagonal matrix with σ1 ⩾
· · ⩾ σn ⩾ 0 [37]. Hence, ∀i = 1, . . . ,N ,

1
2
x(i)TWx(i) + bTx(i) + c

=
1
2
x(i)TUTΣUx(i) + bTUTUx(i) + c

1
2

(
Ux(i)

)T
Σ
(
Ux(i)

)
+ (Ub)T

(
Ux(i)

)
+ c.

(22)

Since U = [u1, u2, . . . , un] is orthonormal, the columns of U
forms an orthonormal basis of Rn, i.e., Rn

= span{u1, . . . , un}.
ore importantly, the linear transformation induced by U pre-
erves the inner product. In other words, it preserves the length
f the vectors and the angle between the vectors. Let the data set
is linearly transformed by matrix U and denote the data set as
U after transformation:

U =
{(

Ux(i), y(i)
) ⏐⏐(x(i), y(i)) ∈ D, i = 1, . . . ,N

}
, (23)

Moreover, define quadratic surface QU ≜ {z ∈ Rn
|
1
2 z

TΣz +

Ub)T z + c = 0}. Hence, when D is quadratically separated by
, it is equivalent to state that DU is quadratically separated by
U . In other words, for any quadratically separable data set D,
here exists an orthonormal matrix U such that the data set can
be separated by QU after the orthogonal transformation induced
by U.

Since the orthogonal transformation preserves length and the
angle between the vectors, the shape of a quadratic surface is not
changed by a orthogonal transformation. Hence, an orthogonal
transformation does not change the separability of a given data
set, which yields the motivation of recording only the diagonal
elements of the matrix in the quadratic term of the separation
surface.
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Appendix B. Reformulation from (ν-FRQSSVM) to
(ν-FRQSSVM′)

Recall the (SQSSVM) model introduced in (2). For any i =

1, . . . ,N , let s(i) =

[
lvec(x(i))

x(i)

]
, z =

[
hvec(W)

b

]
, where hvec and

lvec are defined by (1) and (4), respectively. Hence, the quadratic
constraint becomes a linear one as the following:

y(i)
(
s(i)T z + c

)
⩾ 1 − ξi. (24)

The first term in the objective function of the (SQSSVM) model
is minimized for maximizing the relative geometrical margin of
the separation quadratic surface [9]. For any i = 1, . . . ,N , a
matrix M (i)

∈ Rn× n(n+1)
2 is constructed. For the kth row of M(i)

k = 1, . . . n), i.e. M(i)
k•, assign

(i)
kj =

{
x(i)p if hvec(W)j = Wkp,

0 otherwise.
(25)

here hvec(W)j denotes the jth element of hvec(W). Then define
atrix H(i)

= [M(i), In] and let matrix G = 2
∑N

i=1 H
(i)TH(i). It

as been shown in [9] that
∑N

i=1 ∥Wx(i) + b∥2
2 =

1
2 z

TGz . Thus,
SQSSVM) can be reformulated as (SQSSVM′).

For the (ν-FRQSSVM) model formulated as the following, the
dea is similar.

in
N∑
i=1

θi∥Σx(i) + b∥2
2 − νρ +

1
N

N∑
i=1

θiξi

s.t. y(i)
(
1
2
x(i)TΣx(i) + x(i)Tb + c

)
⩾ ρ − ξi, i = 1, . . . ,N,

Σ ∈ Dn, b ∈ Rn, c ∈ R, ρ ∈ R+, ξ ∈ RN
+
.

(ν-FRQSSVM)

where ν is a given parameter.

For any i = 1, . . . ,N , let r (i) =

[
qvec(x(i))

x(i)

]
, v =

[
dvec(Σ)

b

]
,

where dvec and qvec are defined by (2) and (3), respectively.
Hence, the quadratic constraint becomes a linear one as the
following:

y(i)
(
r (i)Tv + c

)
⩾ ρ − ξi. (26)

Define matrix T(i) ≜
[
diag(x(i)) In

]
, and define matrix Ĝ ≜

2
∑N

i=1 θiT(i)TT(i). One can verify that
∑N

i=1 ∥Σx(i) + b∥2
2 =

1
2v

T Ĝv.
hus, the (ν-FRQSSVM) can be equivalently reformulated as
odel (ν-FRQSSVM′).
Recall that in the inverse of matrix Ĝ is required in the

dual formulation (ν-DFRQSSVM′). The positiveness of matrix Ĝ is
shown in next subsection.

Appendix C. Proof of Lemma 3.1

Proof. The definition of Ĝ yields the following representation
fter conducting the matrix product and the summation.

ˆ =

[
A B
B C

]
(27)

here blocks A, B and C are all diagonal matrices and

= diag

(
N∑
i=1

θix
(i)
k

2
)

, B = diag

(
N∑
i=1

θix
(i)
k

)
, C =

N∑
i=1

θiIn.

(28)
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Fig. 4. ROC curves on the AD data (AD vs. MCI) with different training rates.
Fig. 5. ROC curves on the AD data (CN vs. AD) with different training rates.
p

A

b

Since the fuzzy membership θi > 0, matrix C is non-singular.
y Shur’s complement [37], Ĝ is invertible if and only if A−BC−1B
s invertible. Notice that A − BC−1B is also a diagonal matrix,
hich is denoted as diag (dk). Hence,

k =

N∑
i=1

θix
(i)
k

2
−

(∑N
i=1 θix

(i)
k

)2
∑N

i=1 θi

(29)

Let ak = [
√

θ1, . . . ,
√

θN ]
T and bk = [

√
θ1x

(1)
k , . . . ,

√
θNx

(N)
k ]

T .
By Cauchy–Schwartz’s inequality,

aTb ⩽ ∥a ∥∥b ∥. (30)
k k k k .

14
where the equation holds if and only if (ak)j
(bk)j

= τ is a constant for
allj = 1, . . . ,N .

Hence,
∑N

i=1 θix
(i)
k ⩽

√∑N
i=1 θi

√∑N
i=1 θix

(i)
k

2
. In addition, (ak)j

(bk)j
=

1
x(j)k

cannot be a constant, otherwise, the kth feature in data set D

will be a trivial and yields a contradiction to Assumption 1.
Therefore, dk > 0 for all k = 1, . . . , n, and the lemma is

roved. □

ppendix D. Ranges of parameters

The hyper-parameters in each tested model are listed in Ta-
le 1. Each parameter is tuned as the following: log2 C ∈ {−8, −3,
. . , 21, 20}, log r ∈ {−3, −2, . . . , 2, 3}, log γ ∈ {−3, −2, . . . ,
2 2
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Fig. 6. ROC curves on the AD data (CN vs. MCI) with different training rates.
, 3}. The maximum number of hidden nodes Lmax of the SCN
odel is set as 10, and the maximum times of random config-
ration Tmax is set as 100.
The ANN model and the IFRVFL is implemented with the

eLU activation function. The ANN model implemented in our
xperiments has one hidden layer. The size of the hidden layer
is tuned within range log2

k
n ∈ {0, . . . , 3} [14]. The parameters

f the IFRVFL model, including the number of hidden neurons N ,
he kernel parameter µ, and the penalty parameter C are tuned
within ranges N = 3 : 20 : 203, log2 µ ∈ {−3, −2, . . . , 2, 3} and
log10 C ∈ {−2, . . . , 4} [20].

For the ν-SVM models, including the proposed model, the
range of ν is set as defined in Lemma 2.1 and Theorem 3.2.

Appendix E. Additional experiment results

The ROC curves for all the tested models on the AD data set
with different training rates are plotted as follows.

Figs. 4–6 show that the ROC curves of the proposed model
stays above all the curves of other tested models with different
training rates. It verifies the dominant performance of the pro-
posed model over other tested models, and its potential in the
application to AD detection.
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